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Hardware as the New Battlefield for Security

* Performance has been the overly-focused goal for HW design

» Security of processor/hardware has been mostly overlooked

COMPUTING

“We’ve made tremendous gains in IT in the past

At Least Three Billion Computer Chips Have the Spectre 1)) years, but if secu rity is a war, we’re Iosing it”
2018 Turing Award Lecture

Security Hole
5 N | E ' ;
4 RAMBIleed Source: iscaconf.org

Companies are rushing out software fixes for Chipmageddon.




A Global Picture of Hardware Security
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BPU Attacks —
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Attacks N ———
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Confidentiality fUllulsIa= 1tk Cold-boot |/ Syorage
attacks snooping

What is the overall security landscape with the co-existence of so
many uarch/HW vulnerabilities?
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No Easy Answer to the Question!

Attack-surface A: Attack-surface B:
Vulnerabilities ’ Vulnerabilities

AN l V4
_,@\_What we already know: uArch is not a standalone problem from attack perspective

Example 1-[SpecHammer SP’22]: Rowhammer enhances attack capability of Spectre
Example 2-[PACMAN ISCA’22]: Speculation breaks HW-based pointer authentication

Do secure mechanisms compose well in computing systems?




uArch Security in the Era of Secure Processors

_—
Security of data due to on-

Off-chip Data Security and

HW-enforced access control

chip usage

Secure Processors

v'CPU as root-of-trust
v'Secure memory architectures
v'Trusted execution env. (TEE)

uArch Security

v'Side and covert channels
v Timing-based leakage
v’ Attacks and defenses

uArch Security Architects: Secure Processor Architects:
Existing side chanr|1els work in uArch attacks should be treated
Secure processors: » individually by architects/SE

(c?).r{?’é’eﬁ?i%hnea?cgacﬂs and port lg 7 JWP Typical TEE threat models exclude side

] channels @



But...Really?

_—
Leakage of data due to on-

Off-chip Data Security and

HW-enforced access control

chip usage

uArch Security Secure Processors

v'CPU as root-of-trust
v'Secure memory architectures

v'Trusted execution env. (TEE)
v'Attacks and defenses v'E.g., Intel SGX, TDX, AMD SEV,

v'Side and covert channels
v Timing-based leakage

WHAT IF:

The underlying secure processor designs break the assumption we
made about microarchitecture security?
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Secure Processor Architectures in a Nutshell

Trust * Decades of research on secure processors

b oun d d ry ) Caches and Hash Trees for Efficient Memory Integrity Verification*
- Processor Chip

Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van DijkT and Srinivas Devadas

C ore | | C ore Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge. MA 02139, USA
_I_ ] | Improving Cost, Performance, and Security of
C ac h e Memory Encryption and Authentication *
4A> Chenyu Yant, Brian Rogers], Daniel Englenderf, Yan Solihini, Milos Prvulovict
TCollege of Computing {Dept. of Electrical and Computer Engineering
E nc ry pt D ecC ry pt Georgia Institute of Technology North Carolina State University

V -f - Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make

! | + veri y Secure Processors OS- and Performance-Friendly -

I—I Brian Rogers, Siddhartha Chhabra, Yan Solihin Milos Prvulovic
= Dept. of Electrical and Computer Engineering College of Computing
D a t a North Carolina State University Georgia Institute of Technology
{bmrogers, schhabr, soljhin}@ucsu.edu milos@cc.gatech.edu

[ Metadata ]

* Foundations of today’s TEE-enabled processors

Main memory e Industry solutions: Intel SGX/TDX, ADM SEV etc.




uArch Attacks: The Classical Data-centric View

[ Data ]

Memory load
Compute

uolletadQ <

uArch States > Signal Extraction > Side
Channels

Hardware Resources

‘<S
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The New View from Metadata

[ Metadata H Data ]
\] \]

Memory load
Compute

@)
O
M
-
Q
.
O
>
< > <\ 7

uolletadQ

uArch States
Shared HW Resources

: : Side
Signal Extraction
Channels

Metaleak: Uncovering Side Channels in Secure Processor Architectures Exploiting
Metadata, Md Hafizul Islam Chowdhuryy, Hao Zheng and Fan Yao, ISCA’2024

{ Microarchitecture security investigation in the design space ]

of secure processors w.r.t. metadata mechanisms @
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Metadata in Secure Processors

Secure Processor

.............................................................

Metadata W| Integrity Tree

Data Encryption
(AES counter-mode)

Data Authentication
v
Integrity Verification
(e.g., data replay)
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Investigating Encryption Counter Mechanisms

oo Counter-mode encryption -
On data read | Eneryption [Plaintext Datd] -
Key
| { _Ti
[ AES jOne Time Pad’@
Counter ;
Ciphertext Datq |
. F
1__
il IR
B G-

< Egcryption -» ¢—— Data ——»p
ounters paoi
ain memory

Read: load counter -> generate OTP -> XOR (C)
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Investigating Encryption Counter Mechanisms

_ P Counter-mode encryption -
On data write | Eneryption |Plaintext Data| |
Key
|

[ ES jOne-Time Pad’eva

Counter++

v i
Ciphertext Datq |

[j - ] [[ Data ][ Data ] -

<« Egcryption » «—— Data —»
ounters M .
ain memory

Store: Inc. counter -> generate OTP -> XOR (P)
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Various Counter Mode Schemes

a) Global Counter ((GC)):

[@@@@ ] One counter shared among all memory blocks.

Memory

ModMod .-

b) Monolithic Counter ((MoQ):
(@@@ ] One counter per memory block.

Memory

Mm@ ©M)m)m)

c) Split Counter: Major ((M)) + per-block Minor ((m))
DDDD - (M)is per-group (group of blocks)[m)is per-block.

Memory

Counters are subject to overflow -> counter wrap around -> re-encryption of data blocks in the
counter-sharing group




Timing Vulnerabilities in Memory Encryption

Abstract Counter-mode Encryption Mechanism e Split counter: Major ((M])) + per-block Minor ((m)

Input: P,: current block to encrypt
Function Encrypt(P;):
ctr,;g = ctr
[ Increment (ctr) // Increment the counter‘]
1T ClTyq = ctr™™ Then // Overtlow detected [ Write ]
// Re-encrypt memory blocks in group
for P; in {G — P;} do
Decrypt(P;) with old counter
{ Encrypt(P;) with new counter

(W]l

/

Data Data]' Data \

. \
] Encrypt(P;) using ctr Dec ypt+ Memory
else
|_ Encrypt(P;) using ctr Re'encrypt

Vulnerability Class-1

Encryption counters create metadata state dependent uArch paths for writes
1. Slower: Program data write leading to counter overflow
2. Faster: For regular write cases (not triggering counter overflow)




Investigating Integrity Verification Schemes

e Memory integrity protection: Typically performed using integrity tree

= Root of tree kept on chip
=  Hash-based tree: Each node in tree is a hash of its child nodes

=  Counter-based tree: Each node contains write counters for its child nodes

root (On-chip) -@K
---I - -

Intermedlate
Counters .m .-

Leaf nodes |? H (M)mm---H) -
(Stored in Memory) -

[MemoryBIock] [MemOrVB|°Ck] - - (MJm(m @) - Ezzr:tztrlon

Hash tree Counter tree

d

root (On-chip)

Intermediate 7
nooles Hd)--

tored in Memory) -

1

Partially cached
Y
Partially cached




Timing Vulnerabilities in Integrity Verification

Observation: Integrity tree traversal typically proceeds to the first cached node

Abstract Integrity Verification Mechanism ® Integrity verification for d:’;]ta reads:

Cached
Input: B: // Memory block to verify T dditi | Level-2
Leaf node: Nj // The it" —level ancestor tree WO additiona
node for an attached memory block B memory loads Level-l

(_EFunction Veri -Fy('R) .

// Assume block N/f is cached

for i from 1tolL do
Load Block(Nj) [ Read ] i i - ' Hash

I \Le\g;}ilg)(i’liﬁkgvgj—l)) with NJ HB ][ : ][ : ][ : ]] Viemory

Vulnerability Class-2

Level-0

Integrity verification path varies according to tree node caching state
Integrity tree traversal can lead to data reads with highly-variant latencies




Latency Characterization: Secure Processor Reads

Frequency (%)

Latency distribution due to integrity tree traversal

I Cache Hit = Counter Hit B84 Tree LO Hit [—JTree LO Miss - 100
| X3 Tree L1 Miss E=3Tree L2 Miss EZZ Tree L3 Miss  E==d Tree L4 Miss s 75
>
@]
C
(4]
=}
Fliﬁh 4
% :
—
L
0

300 400 500

Latency (Cycles)
BMT Hash Tree

50 A1
25 1

B Data Cache Hit [ Tree LO Hit K584 Tree LO Miss
| [ Tree L1 Miss BG Tree L2 Miss
100 200 300 400 500 600 00
Latency (Cycles)
Intel SGX

Highly distinguishable multi-level latencies w.r.t. integrity metadata accesses




Latency Characterization: Secure Processor Writes

_. 60
X B Regular Access
> 40 Bl Counter Overflow
3
o> 20
O
g < > M'"
L

0 a ni g

0 1000 2000 3000 4000 5000

Latency (Cycles)

Memory access latency impacted by counter overflow
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Side Channels Exploiting Integrity Tree Metadata

® Integrity tree is global
" |ntegrity tree creates shared tree blocks across security domains (e.g., enclave instances).

= Enabling shared-memory side channel even without explicit data sharing.

root m Shared node

(oata (73 - B counter A0 ety

Memory
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High-level Exploitation Mechanism

Shared node Counter

s R
Memory D/QD """"""" TN (Nshared) Cache

[Data @ Coxunter [;JL;J Integrity Tree] )
: Tree
Cache : |

Sharing of integrity tree metadata
Initial state

| Step 2: Victim execution | | Step 3: Timed load of a data block in P, |

| Step 1: Evict shared tree block |

Access [Py]  Access [P] Access [Py] No Access 6CCESIS [P,] Access [P,]
',. '\\ / / NShared
I : : I NShared _lé . . ‘;J ‘:J Read
2 M . . / /
e G ‘ \ N e
] [ ] | 4 1 Ml
. . : l!ihfrsdalhlt : Nshared mISS'|

Fast verify Slow verify @



High-level Exploitation Mechanism

Exploitation technique: mEvict+mReload

Can infer victim’s secret via the timing for access of
shared tree node in integrity tree traversal

| Step 2: Victim execution | | Step 3: Timed load of a data block in P, |

| Step 1: Evict shared tree blocks |

Access [P;]  Access [P,] Access [P,] No Access 6cces)s LA Access [Py]
". '\\ / / NShared
N I NShared " . ;¢ ‘:J Read

-

[ ]
L8 : ) L -
— . | "
® w—— ! . | AN |
. : {| Nshareqiit | {| Tshared 1SS

Fast verify Slow verify @

\
- N

e e e e

|+

- - -

o= -




Side Channels Exploiting Shared Counter

e Recall: Counter overflow leads to high latency variations M)
Tree Counters

e Encryption counter blocks typically not shared across pages M) M)
e Counters in counter-based integrity tree are shared across domains  gpcryt, @Eﬁ/ M)

Counters .

Initial state
Step 1: Preset — _
[ shared counter J [ Step 2: Victim execution ] [ Step 3: Infer counter overflow ]

Write [P,, P,]

D
o5

w (M) )
D, D, D,

2 Slow Fast @

o Write [Py] Q No Write i OWrite [P,] 2 Read [PA]Q Write [P,] = Read [P,]

D D
Overﬂow &

@ -D .S% Re-encrypt
/ /
M) MNC) -gj OO MU (M) MO (M)



Metaleak-C: High-level Exploitation Mechanism

Exploitation technique: mPreset+mOverflow

Allows monitoring of victim’s targeted write via
inferring counter state

Step 1: Preset — _
[ T e J [ Step 2: Victim execution ] [ Step 3: Infer counter overflow ]
Write [Py, P.] @ Write [P @ No Write | @Wwrite [P,] > Read [P,/ write [P,] = Read [P,]

D
o5

MY (M, 0
D; D, Dy

2 Slow Fast @

g
.

MO MO D) (00

}@D D
Overflow &
-S% Re-encrypt g
/

MU (MO MNL) (voCO



Attacks against Real-world Programs: 1ibjpeg

Exploited gadget: Results:

1 encode one block (...) {

2 ..

3 /+ Encode the coefficients =*/

4  for (k= 1; k < DCTSIZE2; k++) | Original

5 if ([block[jpeg_natural_order[k]]] == 0) {

6 ri+; . .

7 else | Victim access detection
8 ch Oracle .

9 :X\* Check for out—-of-range ccefficient =*/ accuracy. 94.3%

10 if ( > MAX_COEF_BITS) { ... }
11 } I’ \ n
12} AN

~

A&ack setup:‘\ Image reconstruction using Integrity
:' ': tree side channels
Data = !
Counter

E] Victim’s memory block
D Attacker’s memory block
. Shared tree block




Attacks against Real-world Programs: 1ibgcrypt

Exploited gadget: Results:
: — 800
1 gecry mpi_powm (...) ({ o . . o Square e Multiply
2 .. ;600_ .o.o o o. ] .0 ~ O‘O
3 /* Main loop */ < ° O o"0%, e ° o Op *0, e
4 for ;) { Z 400 4 L L oo 1 o 1
5 /* Square operation x/ o 1Og ! i | i 10 i lo i ! i
6 [7gcry7mpihisqrinibasecase (vo.); ] E 500 L Lt ©_; L L Oe;
7 *# Check 1If exponent bit is 1 #/ 0 é 1'0 1'5 2'0 25
8 if o (mpi_limb_signed_t)e < 0 ) { mEvict+mReload Trace Over Time
9 /* Multiplication operation =*/
1 }[—gcry—mplh—mul—karatSuba—case (...)7] mEvict+mReload latency traces for secret
12 ) exponent bit ‘100101’

Attack mounted in SGX processor

Accuracy of exponent bit stealing:
91.2%




How Metadata Mechanisms Break uArch Security

Existing uArch defenses cannot mitigate the metadata-based attacks
Assumptions made by typical microarchitectural defenses (data-centric)
For read-only memory sharing exploits

--> Disabling data/memory sharing on untrusted domains

For interference-based exploit (no memory sharing)

--> |solation of shared HW resource for data access

[New dimension of sharing: metadata that ;;both readable and writable (indirectly}
{ Data ] [ Data ]
[ Metadata ] [ Metadata ]

Cache Partition
Domain 2

Cache Partition
Domain 1

Not compatible with coherence mechanisms @



Takeaways

* Should be cautious about metadata usage in secure processors

* Scope of metadata-based mechanisms can be much broader
- Industry: many variants of TEEs:
+Intel, AMD, ARM, Apple and Qualcomm

- Academia: burgeoning of proposals of secure processor designs
+» More compact counters (easier overflow?)
+TEE in GPUs and accelerators

* Have microarchitecture security mindset in secure processor designs
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Observations from the Metadata Exploit

* Metadata sharing breaks the assumption of sharing in uArch Security
* Hard to address from the classical uArch defense perspective

[ Need to rethink the secure processor designs for microarchitecture securityﬂ

lvLeague: Side Channel-resistant Secure Architectures Using Isolated Domains of
Dynamic Integrity Trees Md Hafizul Islam Chowdhuryy and Fan Yao, MICRO 2024

Architectural support for leakage resistant integrity metadata
mechanisms in secure processor

d



Side-channel Resistant Integrity Metadata Mechanisms

* Main idea: metadata-level isolation for integrity verification (IV)
- Ensure no tree node sharing in memory between domains

On-chip

\

\

\

\
\
1
1
|
\ ’ . |

Domain 1 I Domain 2 Domain 1 Domain 2
Memory Memory
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Statically Partitioning the Integrity Tree?

Memory

* Static partitioning
- Fixed number of supported domains, fixed coverage per domain
- Low domain management overhead (similar to global tree)

»Does not scale well according to runtime domains (e.g., enclaves)

» Could not support application with larger dynamic memory footprint

»Rely on the OS (untrusted) to map pages from fixed region to domains @



Fully Dynamic Isolated Integrity Trees?

Memory

| @ Indirection

D1 D2 D3 D4
* Build and grow per-domain tree at runtime-> flexible memory coverage

* High runtime domain scalability
»High metadata overhead for tree construction (i.e., indirection)
»High tree traversal overhead -> long IV latency for reads

d



lvLeague: Dynamic Domains of Isolated Static Trees

@ Split the integrity tree into many small but fixed-sized sub trees (TreelLing)

Treeling roots are > | .
locked on caches R e s e e

Treeling { I {
OO |

_ Statically
mapped

Dynamic Page to HW-based tree node
Leaf Mapping allocation and reclamation

emory [

e Each sub-tree (Treeling) is statically mapped, no indirection needed for leaf-to-root traversal

* Treelings are allocated to domain on-demand, resize integrity coverage during runtime

e Support a large number of runtime domains (upto 4K) @



lvLeague: Performance Optimization Opportunities

( g - lvLeague’s dynamic intra- and inter-Treeling management enables performance
’ " optimization not applicable in default secure processor designs

(Dintermediate tree node () Utilized tree node @ Regular page @ Hot page
([ ) Unutilized tree node

Intermediate node as leaf
Gradual intra-tree expansion

mapping for hot pages

a U

Reduced IV path length Fast hotpage verification @



How does IvLeague Perform

1.5 . ‘
< [ Baseline [ IvLeague Basic [EEH IvLeague-lInvert 1N IvLeague Pro
o
9
c
()}
K]
=

- M-5 M6 gmeanM Ll L- L- L4 gmeanL

S-5 S 6 gmeanS M 1

Comparison of performance (i.e., Weighted IPC normalized to Baseline) under different schemes.
{ Performance of IvLeague-Basic: $2.7% J4'5.5% $17.4% J

Compared to baseline Small Medium Large

N82%/M3.5%  3.4%/19.3% L 13.2%/13.4% J

Small Medium Large

Performance of IvLeague-Invert/IlvLeague-Pro:
Compared to baseline

(5 Side channel-resistant integrity mechanisms can have better performance
than the baseline insecure scheme with global integrity tree!




Takeaways and Conclusions

* uArch attacks are becoming ubiquitous
- “The new buffer overflow”

* uArch security cannot be considered as a standalone problem!
- Look at uarch security from a broader perspective

* The need to understand composability of security mechanisms
- Would a defense for one threat bring a bigger issue for another?

* Performance and security can co-exist if done well

* Lots of things to explore for cross-threat model uArch security
research!
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lvLeague: Side Channel-resistant Secure Architectures Using Isolated Domains of
Dynamic Integrity Trees Md Hafizul Islam Chowdhuryy and Fan Yao, MICRO 2024

MICRO paper presentation on Tuesday Session 8A. Welcome to attend!

Thanks! Questions?

Fan Yao, Email: fan.yao@ucf.edu
UCF CASR Lab (https://casr.ece.ucf.edu)
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